Heat Capacity comparison of CO2 in the atmosphere versus the top layer of oceans water

Energy	$E = Cp \cdot \Delta T \cdot m$
	ΔT = Temperature difference
	m = mass = ρ . V
	V = Volume = Surface (S) x height (h)

Carbon Dioxide			at 15 °C	Water		at 15 °C	
CO2	Specific Heat	Ср	0.83 kJ / kg °K	H2O	Specific Heat	Ср –	4.19 kJ / kg °K
	Density	ρ	1.85 kg / m^3		Density	ρ	1000 kg / m^3
Average Relative Density in Troposhere (ISA) 0.546							
CO2 Fract	ion of atmosphere	%	0.04%	Water Fra	action of Earth's Surface	%	71%
Energy it takes to increase all CO2 in atmosphere by 1 deg: = Energy aborbed by certain depth of the top layer of oceans							
E(ΔT =1) = % . Cp . ρ . S. h							
h = ave	rage height of tropo	shere =	13 km	h = d =	- height (depth) of layer	of oceans	s surfaces
4.4 $.s = E(\Delta T=1) = s.d.$ 2966.5 => d = 0.0015 m							

0.0015 m **1.5 mm**

The real e	energy transmitter: Laten	t Heat					
							at 15 °C
					Heat of Vaporization *	ΔH_{vap}	2465 kJ / kg
* the amour	nt of energy that must be add	ed to a liqu	iid to evaporatte	e a give	en quantity into a gas		
			H2	20	Specific Heat	Ср	4.19 kJ / kg °K
			CC	02	Specific Heat	Ср	0.83 kJ / kg °K
Earth's Sur	face		Average heigh	nt of Tro	posphere		
Land:	148,940,000 km^2	29%	13 km	ı			
Water:	361,132,000 km^2	71%					
	510,072,000 km ²		6.63E+18 m/	^3	Volume of Troposhere		
Specific heat of air		Average Relat	tive De	nsity in Troposhere (ISA)	0.546033		
	1 kJ / kg K				ρ_{o} =	1.225	kg / m^3
To heat wh	ole Troposhere by 1 deg:		E (∆T =1)) = Cp .	ρ. V		
			E =	4.4E+1	8 kJ		
			in 100 years	4.4E+1	6 kJ		
			per Day	1.2E+1	4 kJ		

Compare with Latent Heat transfers within atmosphere from what we know about thunderstorms:

Wikipedia: Thunderstorms

In a typical thunderstorm, approximately 5×10⁸ kg of water vapor are lifted, and the amount of energy released when this condenses is 10¹⁵ joules.

This is on the same order of magnitude of energy released within a tropical cyclone, and more energy than that released during the atomic bomb blast at Hiroshima, Japan in 1945.

Thunderstorms occur throughout the world, even in the polar regions, with the greatest frequency in tropical rainforest areas, where they may occur nearly daily. At any given time, approximately 2,000 thunderstorms are occurring on Earth. Life cycle: Developing, Mature and Dissipating stage

Each of these three stages take an average of 30 minutes

What is that Energy wise:

	10^15 J	
	2000 at any tim	e
At any given time	2 x 10^15 kJ	
	2E+15 kJ	in average 1.5 hours
	3.2E+16 kJ per da	у

What does it take to heat the troposhere by 1 deg in 100 years: 1.2E+14 kJ per day

Factor: **263** for what we know about thunderstorms

This is just Thunderstoms. In every raincloud latent heat is transferred Latent Heat that is daily transferrred in the atmosphere is hundreds time bigger than the energy required to cause recent climate change.

Common sense: It is very probable that water is responsible for imbalances in the Earth's Energy balance due to its role in variations in the meridional energy transport.